
I believe the area where I am being appointed as Center Manager has good potential for growth. I see opportunities to improve customer service, team coordination, and overall performance. I am ready to take responsibility, understand local needs, and work hard to achieve the company’s targets and build strong relations in the area.
Outliers are data points that are significantly different from the rest of the values in a dataset. They appear unusually high or low compared to the majority and can affect the accuracy of your analysis.
For example, if most students score between 60 and 90 on a test, but one student scores 10, that 10 is likely an outlier.
—
🔍 How to Identify Outliers:
You can detect outliers using several common methods:
1. Visual methods:
- Box plot: Outliers appear as dots outside the “whiskers” of the box.
- Scatter plot: Outliers stand far away from the main cluster of points.
2. Statistical methods:
- Z-score: Measures how far a data point is from the mean. A score above 3 or below -3 is often considered an outlier.
- IQR (Interquartile Range):
Outliers fall below Q1 – 1.5×IQR or above Q3 + 1.5×IQR
3. Domain knowledge:
Sometimes, a value may look extreme but is valid based on real-world context. Always consider the background before deciding.
Let’s say you have the following data on daily sales:
45, 48, 50, 47, 49, 100
Here, “100” stands out from the rest and may be an outlier.
—
✅ How to Handle Outliers:
- Investigate: Is it a typo or a valid value?
- Remove: If it’s an error or not relevant, you can exclude it from analysis.
- Transform: Use techniques like log transformation to reduce its impact.
- Use robust statistics: Median and IQR are less affected by outliers than mean and standard deviation.